Photonic Crystal Biosensor Thesis Statements


J. Juan-Colás, A. Parkin, K. E. Dunn, M. G. Scullion, T. F. Krauss, and S. D. Johnson, “The electrophotonic silicon biosensor,” Nat. Commun. 7, 12769 (2016).
[Crossref] [PubMed]

L. Yin, A. B. Farimani, K. Min, N. Vishal, J. Lam, Y. K. Lee, N. R. Aluru, and J. A. Rogers, “Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics,” Advanced Materials 27, 1857–1864 (2015).
[Crossref] [PubMed]

S.-K. Kang, G. Park, K. Kim, S.-W. Hwang, H. Cheng, J. Shin, S. Chung, M. Kim, L. Yin, J. C. Lee, and K. M. Lee, “Dissolution chemistry and biocompatibility of silicon-and germanium-based semiconductors for transient electronics,” ACS Appl. Mater. Interfaces 7, 9297–9305 (2015).
[Crossref] [PubMed]

M. G. Scullion, M. Fischer, and T. F. Krauss, “Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing,” Photonics 1, 412–420 (2014).
[Crossref]

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-Cell Photonic Nanocavity Probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref] [PubMed]

S. Regonda, R. Tian, J. Gao, S. Greene, J. Ding, and W. Hu, “Silicon multi-nanochannel fets to improve device uniformity/stability and femtomolar detection of insulin in serum,” Biosens. Bioelectron. 45, 245–251 (2013).
[Crossref] [PubMed]

S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, “A Physically Transient Form of Silicon Electronics,” Science (80-.).  337, 1640–1644 (2012).
[Crossref] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Biosensors and Bioelectronics Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26, 4024–4031 (2011).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref] [PubMed]

R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48, 958–963 (2009).
[Crossref] [PubMed]

S. Cattarin and M. M. Musiani, “Electrodissolution and passivation of silicon in aqueous alkaline media: A voltammetric and impedance investigation,” J. Phys. Chem. B 103, 3162–3169 (1999).
[Crossref]

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic etching of crystalline silicon in alkaline solutions i. orientation dependence and behavior of passivation layers,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[Crossref]

H. Z. Massoud and J. D. Plummer, “Analytical relationship for the oxidation of silicon in dry oxygen in the thin - film regime,” J. Appl. Phys. 62, 3416–3423 (1987).
[Crossref]

L. Yin, A. B. Farimani, K. Min, N. Vishal, J. Lam, Y. K. Lee, N. R. Aluru, and J. A. Rogers, “Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics,” Advanced Materials 27, 1857–1864 (2015).
[Crossref] [PubMed]

S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, “A Physically Transient Form of Silicon Electronics,” Science (80-.).  337, 1640–1644 (2012).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in “Photonics Conference (IPC), 2016 IEEE,” (IEEE, 2016), pp. 144–145.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic etching of crystalline silicon in alkaline solutions i. orientation dependence and behavior of passivation layers,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[Crossref]

S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, “A Physically Transient Form of Silicon Electronics,” Science (80-.).  337, 1640–1644 (2012).
[Crossref] [PubMed]

S. Cattarin and M. M. Musiani, “Electrodissolution and passivation of silicon in aqueous alkaline media: A voltammetric and impedance investigation,” J. Phys. Chem. B 103, 3162–3169 (1999).
[Crossref]

S.-K. Kang, G. Park, K. Kim, S.-W. Hwang, H. Cheng, J. Shin, S. Chung, M. Kim, L. Yin, J. C. Lee, and K. M. Lee, “Dissolution chemistry and biocompatibility of silicon-and germanium-based semiconductors for transient electronics,” ACS Appl. Mater. Interfaces 7, 9297–9305 (2015).
[Crossref] [PubMed]

S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, “A Physically Transient Form of Silicon Electronics,” Science (80-.).  337, 1640–1644 (2012).
[Crossref] [PubMed]

S.-K. Kang, G. Park, K. Kim, S.-W. Hwang, H. Cheng, J. Shin, S. Chung, M. Kim, L. Yin, J. C. Lee, and K. M. Lee, “Dissolution chemistry and biocompatibility of silicon-and germanium-based semiconductors for transient electronics,” ACS Appl. Mater. Interfaces 7, 9297–9305 (2015).
[Crossref] [PubMed]

C. Coletti, M. J. Jaroszeski, A. Pallaoro, A. M. Hoff, S. Iannotta, and S. E. Saddow, “Biocompatibility and wettability of crystalline SiC and Si surfaces,” in “Proc. 29th Annu. Int. Conf. IEEE EMBS,” (2007), August, pp. 5849–5852.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic etching of crystalline silicon in alkaline solutions i. orientation dependence and behavior of passivation layers,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Skirtach, N. Le Thomas, and R. Baets, “Microscope-less lab-on-a-chip raman spectroscopy of cell-membranes,” in “Photonics Conference (IPC), 2016 IEEE,” (IEEE, 2016), pp. 144–145.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Biosensors and Bioelectronics Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref] [PubMed]

S. Regonda, R. Tian, J. Gao, S. Greene, J. Ding, and W. Hu, “Silicon multi-nanochannel fets to improve device uniformity/stability and femtomolar detection of insulin in serum,” Biosens. Bioelectron. 45, 245–251 (2013).
[Crossref] [PubMed]

J. Juan-Colás, A. Parkin, K. E. Dunn, M. G. Scullion, T. F. Krauss, and S. D. Johnson, “The electrophotonic silicon biosensor,” Nat. Commun. 7, 12769 (2016).
[Crossref] [PubMed]

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref] [PubMed]

L. Yin, A. B. Farimani, K. Min, N. Vishal, J. Lam, Y. K. Lee, N. R. Aluru, and J. A. Rogers, “Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics,” Advanced Materials 27, 1857–1864 (2015).
[Crossref] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26, 4024–4031 (2011).
[Crossref] [PubMed]

M. G. Scullion, M. Fischer, and T. F. Krauss, “Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing,” Photonics 1, 412–420 (2014).
[Crossref]

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-Cell Photonic Nanocavity Probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref] [PubMed]

S. Regonda, R. Tian, J. Gao, S. Greene, J. Ding, and W. Hu, “Silicon multi-nanochannel fets to improve device uniformity/stability and femtomolar detection of insulin in serum,” Biosens. Bioelectron. 45, 245–251 (2013).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[Crossref] [PubMed]

N. G. Gonzalez-Pereyra, “Anisotropic etching of monocrystalline silicon under subcritical conditions,” Ph.D. thesis, All Dissertations, Paper 1497 (2015).

S. Regonda, R. Tian, J. Gao, S. Greene, J. Ding, and W. Hu, “Silicon multi-nanochannel fets to improve device uniformity/stability and femtomolar detection of insulin in serum,” Biosens. Bioelectron. 45, 245–251 (2013).
[Crossref] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26, 4024–4031 (2011).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-Cell Photonic Nanocavity Probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref] [PubMed]

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic etching of crystalline silicon in alkaline solutions i. orientation dependence and behavior of passivation layers,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Development and optimisation of photonic crystal based nanosensors

Mitchell, Micki

Date:2016

Copyright:© 2016, Micki Mitchell.

Copyright information:http://creativecommons.org/licenses/by-nc-nd/3.0/

Full text restriction information:No embargo required

Citation:Mitchell, M. 2016. Development and optimisation of photonic crystal based nanosensors. PhD Thesis, University College Cork.

Supervisor(s):O'Riordan, Alan

Abstract:

This thesis involved the development of two Biosensors and their associated assays for the detection of diseases, namely IBR and BVD for veterinary use and C1q protein as a biomarker to pancreatic cancer for medical application, using Surface Plasmon Resonance (SPR) and nanoplasmonics. SPR techniques have been used by a number of groups, both in research [1-3] and commercially [4, 5] , as a diagnostic tool for the detection of various biomolecules, especially antibodies [6-8]. The biosensor market is an ever expanding field, with new technology and new companies rapidly emerging on the market, for both human [8] and veterinary applications [9, 10]. In Chapter 2, we discuss the development of a simultaneous IBR and BVD virus assay for the detection of antibodies in bovine serum on an SPR-2 platform. Pancreatic cancer is the most lethal cancer by organ site, partially due to the lack of a reliable molecular signature for diagnostic testing. C1q protein has been recently proposed as a biomarker within a panel for the detection of pancreatic cancer. The third chapter discusses the fabrication, assays and characterisation of nanoplasmonic arrays. We will talk about developing C1q scFv antibody assays, clone screening of the antibodies and subsequently moving the assays onto the nanoplasmonic array platform for static assays, as well as a custom hybrid benchtop system as a diagnostic method for the detection of pancreatic cancer. Finally, in chapter 4, we move on to Guided Mode Resonance (GMR) sensors, as a low-cost option for potential use in Point-of Care diagnostics. C1q and BVD assays used in the prior formats are transferred to this platform, to ascertain its usability as a cost effective, reliable sensor for diagnostic testing. We discuss the fabrication, characterisation and assay development, as well as their use in the benchtop hybrid system.

Show full item record

This item appears in the following Collection(s)

0 thoughts on “Photonic Crystal Biosensor Thesis Statements”

    -->

Leave a Comment

Your email address will not be published. Required fields are marked *